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Abstract
We complete the construction of raising and lowering operators, given in a
previous work, for the orthogonal polynomials of hypergeometric type on
a non-homogeneous lattice. We extend these operators to the generalized
orthogonal polynomials, namely, those difference orthogonal polynomials that
satisfy a similar difference equation of hypergeometric type.

PACS numbers: 02.10.De, 02.20.Sv, 02.30.Vv, 02.70.Bf, 03.65.Ge, 05.50.+q

1. Introduction

Recently, we have presented a paper on the raising and lowering operators for the orthogonal
polynomials (OPs) of hypergeometric type [1] (in connection with the factorization method
defined by Hull and Infeld). In that paper, we covered only OPs of continuous and discrete
variables on a uniform lattice, as well as orthonormal functions of continuous and discrete
variables.

In this paper, we continue the construction of raising and lowering operators for OPs
on a non-homogeneous lattice. The starting point is also the Rodriguez formula and the
fundamental properties of OPs given by Nikiforov and collaborators [2, 3], which include the
q-analogue of classical OPs of a discrete variable.

Atakishiyev and Suslov [4, 5] extended the classification of Nikiforov to OPs of a discrete
variable defined by Andrews and Askey and proved that they satisfy a difference equation only
in the cases of x(s) linear, quadratic q-linear and q-quadratic.

The construction of raising and lowering operators on a non-uniform lattice was also
worked out by Alvarez-Nodarse and Costas-Santos [6] and Alvarez-Nodarse and Arvesú [7]
for the lattice x(s) = c1q

s + c2q
−s + c3.

Similar work has been carried out by Smirnov for OPs of hypergeometric type on
homogeneous [8] and non-homogeneous [9] lattices, although the raising and lowering
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operators have been defined with respect to two indices: n, the order of polynomials, and
m, the order of the difference derivatives of polynomials. In this paper, we define the raising
and lowering operators with respect to one index only, either n or m.

In order to complete the classification of the OPs of hypergeometric type, we include the
generalized classical OPs that also satisfy a difference/differential equation of hypergeometric
type.

Since all classical OPs of a discrete variable lead in the limit to the corresponding OPs
of a continuous variable, we begin in section 2 with the raising and lowering operators for
generalized OPs of a continuous variable with respect to the index n, using the Rodriguez
formula. In section 3 we repeat the same construction for generalized classical OPs of
a discrete variable on a homogeneous lattice. In section 4 we extend the construction to
classical OPs of a discrete variable on a non-homogeneous lattice in the general case, when
x(s) = c1s

2 + c2s + c3 or x(s) = c1q
s + c2q

−s + c3.
In section 5 we complete the picture with the construction of raising and lowering operators

for generalized classical OPs on non-homogeneous lattices, that include the q-analogue of
classical OPs of a discrete variable. In all these cases, the raising and lowering operators are
given with respect to one index, say, n. But the same operator can be considered, written in
an appropriate form, for the raising and lowering operators with respect to index m.

2. Raising and lowering operators for generalized classical OPs of a continuous variable

Let yn(x) be an OP of a continuous variable satisfying the differential equation [2]

σ(x)y ′′
n(x) + τ (x)y ′

n(x) + λnyn(x) = 0 (1)

where σ(x) and τ (x) are polynomials of at most second and first degrees, respectively, and

λn = −n
(
τ ′ + 1

2 (n − 1)σ ′′) . (2)

It can be proven that the derivatives of yn(x), namely, y(m)
n (x) = vmn(x), m =

0, 1, . . . , n − 1, satisfy a similar equation

σ(x)v′′
mn(x) + τmv′

mn(x) + µmnvmn(x) = 0 (3)

with τm = τ (x) + mσ ′(x) and µmn = −(n − m)
(
τ ′ + n+m−1

2 σ ′′) ,m = 0, 1, . . . , n − 1.
We call these polynomials generalized OPs of hypergeometric type, some particular

examples of which are the Legendre, Laguerre, Hermite and Jacobi generalized OPs1.
The polynomials of hypergeometric type satisfy an orthognality property with respect to

the weight function ρ(x)∫ b

a

y�(x)yn(x)ρ(x) dx = δ�nd
2
n. (4)

Similarly, the generalized OPs satisfy∫ b

a

vm�
(x)vmn(x)ρm(x) dx = δ�nd

2
mn (5)

where d2
n and d2

mn are normalization constants.
It can be proven that [11]

d2
mn = d2

nn

(
n−1∏
k=m

µkn

)−1

d2
0n = d2

nn

(
n−1∏
k=0

µkn

)−1

1 Although some authors call these polynomials associated OPs, we prefer to call them generalized OPs in order to
distinguish from the traditional name of associated classical OPs; see [10].
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from which d2
nn can be eliminated. Therefore

d2
mn = d2

0n

m−1∏
k=0

µkn (6)

where d2
0n and d2

n are given in the tables of Nikiforov et al [12].
The generalized OPs of hypergeometric type can be calculated from the weight function

ρm(x) = σ(x)mρ(x), with the help of the Rodriguez formula:

vmn(x) = AmnBn

σm(x)ρ(x)

dn−m

dxn−m
{ρn(x)} (7)

where

Amn = (−1)m
m−1∏
k=0

µkn = n!

(n − m)!

m−1∏
k=0

(
− λn+k

n + k

)
. (8)

The leading coefficients of the orthogonal polynomial yn(x) = anx
n + bnx

n−1 + · · · can
be calculated [13]

an = Bn

n−1∏
k=0

(
− λn+k

n + k

)
(9)

hence it follows that AnnBn = n!an.
We address the construction of the raising and lowering operators for the generalized OPs

using the Rodriguez formula, as we did in a recent work [1].
We have from equation (7)

vm,n+1(x) = Am,n+1Bn+1

σmρ(x)

dn+1−m

dxn+1−m
{ρn(x)} = Am,n+1Bn+1

σmρ(x)

dn−m

dxn−m
{τn(x)ρn(x)}

= Am,n+1Bn+1

σm(x)ρ(x)

{
τn(x)

dn−m

dxn−m
{ρn(x)} + (n − m)τ ′

n

dn−m−1

dxn−m−1
{ρn(x)}

}

= Bn+1

Bn

{
Am,n+1

Amn

τn(x)vmn(x) + (n − m)
Am,n+1

Am+1,n

τ ′
nσ (x)v′

mn(x)

}

= Bn+1

Bn

{
n + 1

n − m + 1

n

λn

λn+m

n + m
τn(x)vmn(x) − n + 1

n − m + 1

n

λn

τ ′
nσ (x)v′

mn(x)

}
. (10)

The right-hand side can be considered the raising operator that, when applied to vmn(x),
gives a new polynomial of higher order vm,n+1(x).

In order to evaluate the lowering operator we need a recurrence relation for the generalized
polynomials. We write

xvmn(x) =
n+1∑
k=0

cknvmk(x) ckn = 1

d2
mk

∫ b

a

vmk(x)xvmnρm(x) dx. (11)

From the orthogonality condition (5) we deduce∫ b

a

vmn(x)xrρm(x) dx = 0 for r < n − m.
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Since xp
(m)
k (x) is a polynomial of order k + 1 −m it follows that ckn = 0 if k + 1 −m < n−m,

or k + 1 < n. Hence

xvmn = α̃nvm,n+1(x) + β̃nvmn(x) + γ̃nvm,n+1(x) (12)

where α̃n = cn+1,n, β̃n = cnm, γ̃n = cn−1,n.
The coefficients α̃n, β̃n and γ̃n can be expressed in terms of the squared norm d2

n and the
leading coefficients an and bn in yn(x).

From equation (11) it can be proven that d2
mkckn = d2

mncnk.
Since α̃n−1 = cn,n−1, γ̃n = cn−1,n, if we put k = n − 1 we obtain

cn−1,nd
2
m,n−1 = cn,n−1d

2
mn

hence

γ̃n = α̃n−1
d2

m,n

d2
m,n−1

.

Introducing the expansion yn(x) = anx
n + bnx

n−1 + · · · in equation (12) and comparing
the coefficients of the highest terms, we have

an(n − m + 1) = α̃nan+1(n + 1) bn(n − m) = α̃nbn+1n + β̃nann.

Hence

α̃n = an

an+1

n − m + 1

n + 1
(13)

β̃n = bn

an

(n − m)

n
− bn+1

an+1

n + 1 − m

n + 1
(14)

γ̃n = an−1

an

n − m

n

d2
m,n

d2
m,n−1

. (15)

Substituting equation (9) in α̃n we obtain

α̃n = −Bn

Bn+1

n − m + 1

n + 1

λn

n

2n

λ2n

2n + 1

λ2n+1
. (16)

Hence equation (10) can be written

α̃n

λ2n

2n
vm,n+1(x) =

{
λn+m

n + m

τn(x)

τ ′
n

vmn(x) − σ(x)v′
mn(x)

}
. (17)

Inserting equation (12) into equation (17) we obtain

γ̃n

λ2n

2n
vm,n−1(x) =

{
− λn+m

n + m

τn(x)

τ ′
n

+
λ2n

2n
(x − β̃n)

}
vmn(x) + σ(x)v′

mn(x). (18)

The right-hand sides of equations (17) and (18) can be considered the raising and lowering
operators for the generalized classical OPs with respect to the index n.

All the constants α̃n, β̃n, γ̃n, λn, τ
′
n can be calculated from the tables of Nikiforov et al

[12].
Now we define the orthonormalized function

ψmn(x) = d−1
mn

√
ρm(x)vmn(x) (19)

hence

ψ ′
mn(x) = 1

2

ρ ′
m(x)

ρ(x)
ψmn(x) + d−1

mn

√
ρm(x)v′

mn(x) = 1

2

τm−1(x)

σ (x)
ψmn(x) + d−1

mn

√
ρm(x)v′

mn(x).

(20)
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Multiplying equation (17) by d−1
mn

√
ρm(x) and substituting equation (20) into equation (17)

we obtain

α̃n

λ2n

2n

dm,n+1

dmn

ψm,n+1(x) = λn+m

n + m

τn(x)

τ ′
n

ψmn(x) +
1

2
τm−1(x)ψmn(x) − σ(x)ψ ′

mn(x)

= L+(x, n)ψm,n(x). (21)

Similarly

γ̃n

λ2n

2n

dm,n−1

dmn

ψm,n−1(x) =
{
− λn+m

n + m

τn(x)

τ ′
n

+
λ2n

2n
(x − β̃n) − 1

2
τm−1(x)

}
ψmn(x)

+ σ(x)ψ ′
mn(x) = L−(x, n)ψm,n(x) (22)

which can be considered the raising and lowering operators for the generalized orthonormal
functions ψmn(x). These operators are mutually adjoint with respect to the scalar product of
unit weight.

Following the same procedure as in [1] we can factorize the raising and lowering operators
as follows

L−(x, n + 1)L+(x, n) = µ(n) − σ(x)H(x, n)

L+(x, n)L−(x, n + 1) = µ(n) − σ(x)H(x, n + 1)

where

µ(n) = λ2n

2n

λ2n+2

2n + 2
α̃nγ̃n+1

and H(x, n) is the differential operator derived from the left-hand side of equation (3) after
substituting ψmn(x) instead of vmn(x).

Notice that the factorization of the raising and lowering operators is defined in a basis
independent manner, which is equivalent to the Hull–Infeld method.

3. Raising and lowering operators for generalized classical OPs of a discrete variable on
a uniform lattice

Let yn(x) be an orthogonal polynomial of a discrete variable satisfying the difference
equation [14]

σ(x)�∇yn(x) + τ (x)�yn(x) + λnyn(x) = 0 (23)

where σ(x) and τ (x) are polynomials of at most second and first degrees, respectively,

λn = −n
(
τ ′ + 1

2 (n − 1)σ ′′) (24)

and the forward and backward difference operators are, respectively,

�f (x) = f (x + 1) − f (x) ∇f (x) = f (x) − f (x − 1).

It can be proven [15] that the differences of yn(x), namely �myn(x) = vmn(x), satisfy a
similar equation of hypergeometric type

σ(x)�∇vmn(x) + τm(x)�vmn(x) + µmnvmn(x) = 0 (25)

with

τm(x) = τ (x + m) + σ(x + m) − σ(x)

µmn = λn − λm = −(n − m)

(
τ ′ +

n + m − 1

2
σ ′′

)
m = 0, 1, . . . , n − 1.

We call the polynomials vmn(x) the generalized classical OPs of a discrete variable, and
among these we find the Hahn, Chebyshev, Meixner, Kravchuk and Charlier polynomials.
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The classical OPs of a discrete variable satisfy an orthogonality property with respect to
the weight function ρ(x)

b−1∑
x=a

y�(x)yn(x)ρ(x) = δ�nd
2
n. (26)

Similarly, the generalized classical OPs of a discrete variable satisfy the orthogonality
property

b−1∑
x=a

vm�(x)vmn(x)ρm(x) = δ�nd
2
mn (27)

where d2
n and d2

mn are normalization constants. It can be proven that [16]

d2
mn = d2

nn

(
n−1∏
k=m

µkn

)−1

d2
0n = d2

nn

(
n−1∏
k=0

µkn

)−1

.

If we eliminate dnn in the above equations we obtain

d2
mn = d2

0n

m−1∏
k=0

µkn. (28)

The generalized classical OPs of a discrete variable can be calculated from the weight
function ρm(x) with the formula [16]

vmn(x) = AmnBn

ρm(x)
∇n−m {ρn(x)} (29)

where

Amn = n!

(n − m)!

m−1∏
k=0

(
− λn+k

n + k

)
(30)

Bn = �nyn(x)

Ann

. (31)

The leading coefficients of the classical OPs of a discrete variable yn(x) = anx
n +

bnx
n−1 + · · · are given by [17]

an = Bn

n−1∏
k=0

(
− λn+k

n + k

)
(32)

from which it follows that AnnBn = n!an.
We now have all the necessary ingredients to construct the raising and lowering operators

for the generalized OPs of a discrete variable in analogy with those of a continuous variable.
From equation (29) we have

vm,n+1(x) = Am,n+1Bn+1

ρm(x)
∇n−m+1 {ρn+1(x)}

= Am,n+1Bn+1

ρm(x)
∇n−m {�ρn+1(x − 1)}

= Am,n+1Bn+1

ρm(x)
∇n−m {τn(x)ρn(x)}

= Am,n+1Bn+1

ρm(x)
{τn(x)∇n−mρn(x) + (n − m)τ ′

n∇n−m−1ρn(x − 1)}. (33)
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From equation (29) we have

∇n−m{ρn(x)} = ρm(x)

AmnBn

vmn(x)

∇n−m−1{ρn(x − 1)} = σ(x)ρm(x)

Am+1,nBn

�m+1yn(x − 1) = σ(x)ρm(x)

Am+1,nBn

= ∇vmn(x).

Substituting the last two expressions into equation (33) and using equation (30) we obtain

vm,n+1(x) = Bn+1

Bn

{
n + 1

n + 1 − m

λn+m

n + m

n

λn

τn(x)vmn(x) − n + 1

n + 1 − m

n

λn

τ ′
nσ (x)∇vmn(x)

}
(34)

which raises in one step the order of the generalized polynomials in terms of the polynomials
vmn(x) and ∇vmn(x).

In order to evaluate the lowering operator we calculate a recurrence relation for the
generalized OPs of a discrete variable. We write

xvmn(x) =
n+1∑
k=0

cknvmk(x) ckn = 1

d2
mk

b−1∑
x=a

vmk(x)xvmn(x)ρm(x). (35)

As in the case of the continuous variable ckn = 0, if k + 1 < n. Hence

xvmn(x) = α̃nvm,n+1(x) + β̃nvmn(x) + γ̃nvm,n−1(x) (36)

where α̃n = cn+1,n, β̃n = cnn, γ̃n = cn−1,n.
From equation (35) it follows that d2

mkckn = d2
mncnk.

Since α̃n−1 = cn,n−1, γ̃n = cn−1,n, if we put k = n − 1, we obtain cn−1,nd
2
m,n−1 =

cn,n−1d
2
m,n, hence

γ̃n = α̃n−1
d2

m,n

d2
m,n−1

.

Introducing the expansion yn(x) = anx
n + bnx

n−1 + · · · in equation (36), comparing the
coefficients of the highest terms, and using

�mxn = n(n − 1) · · · (n − m + 1)xn−m +
m

2
n(n − 1) · · · (n − m)xn−m+1 + · · ·

we obtain

an(n − m + 1) = α̃nan+1(n + 1)

ann(n − m)
m

2
+ bn(n − m) = α̃nbn+1n + β̃nann + α̃nan+1(n + 1)n

m

2
.

From these relations and from equation (32) we obtain

α̃n = an

an+1

n − m + 1

n + 1
= − Bn

Bn+1

λn

n

2n

λ2n

2n + 1

λ2n+1

n − m + 1

n + 1
(37)

β̃n = bn

an

(n − m)

n
− bn+1

an+1

n − m + 1

n + 1
− m

2
(38)

γ̃n = an−1

an

n − m

n

d2
m,n

d2
m,n−1

. (39)

Hence equation (34) can be written

α̃n

λ2n

2n
vm,n+1(x) = λn+m

n + m

τn(x)

τ ′
n

vmn(x) − σ(x)∇vmn(x). (40)
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Inserting equation (36) into equation (40) we obtain

γ̃n

λ2n

2n
vm,n−1(x) = − λn+m

n + m

τn(x)

τ ′
n

vmn(x) +
λ2n

2n
(x − β̃n)vmn(x) + σ(x)∇vmn(x). (41)

The right-hand sides of equations (40) and (41) can be considered the raising and lowering
operators with respect to the index n for the generalized OPs of a discrete variable on a
homogeneous lattice.

All the constants α̃n, β̃n, γ̃n, λn, τ
′
n can be calculated from the tables of Nikiforov et al

[18]. Obviously, when m = 0, α̃n, β̃n and γ̃ become αn, βn and γn, respectively.
Now we define the orthonormal function of a discrete variable

φmn(x) = d−1
mn

√
ρm(x)vmn(x).

Using the identity ∇ρm(x)

ρm(x)
= τm−1(x)

τm−1(x)+σ (x)
and the properties of the backwards operator we

obtain

∇φmn(x) =
√

σ(x)

τm−1(x) + σ(x)
d−1

mn

√
ρm(x)∇vmn(x)

+
τm−1(x)√

σ(x) +
√

τm−1(x) + σ(x)

φmn(x)√
σ(x) + τm−1(x)

. (42)

Multiplying both sides of equation (40) by d−1
mn

√
ρm(x) and inserting the value d−1

mn

√
ρm(x)

∇vmn(x) obtained in equation (42), we obtain

α̃n

λ2n

2n

dm,n+1

dm,n

φm,n+1(x) = L+(x, n)φmn(x)

=
{

+
λn+m

n + m

τn(x)

τ ′
n

+

√
σ(x)τm−1(x)√

σ(x) +
√

σ(x) + τm−1(x)

}
φmn(x)

−
√

σ(x) − (τm−1(x) + σ(x))∇φmn(x). (43)

Similarly

γ̃n

λ2n

2n

dm,n−1

dm,n

φm,n−1(x) = L−(x, n)φmn(x)

=
{
− λn+m

n + m

τn(x)

τ ′
n

+
λ2n

2n
(x − β̃n) −

√
σ(x)τm−1(x)√

σ(x) +
√

σ(x) + τm−1(x)

}
φmn(x)

+
√

σ(x) (τm−1(x) + σ(x))∇φmn(x). (44)

The expressions (43) and (44) can be considered the raising and lowering operators,
respectively, for the generalized orthonormal functions on a homogeneous lattice. These
operators are mutually adjoint with respect to the scalar product of unit weight.

Notice that in equations (43) and (44) the last term is proportional to ∇φmn(s), which in
the continuous limit becomes the derivative ψ ′

mn(x).
As in [1] we can factorize the raising and lowering operators as follows:

L−(x, n + 1)L+(x, n) = µ(n) + µ(x + 1, n)H(x, n)

L+(x, n)L−(x, n + 1) = µ(n) + µ(x, n − 1)H(x, n + 1)

where

µ(n) = λ2n

2n

λ2n+2

2n + 2
α̃nγ̃n+1 µ(x, n) = λn

n

τn(x)

τ ′
n

− σ(x)

and H(x, n) is the difference operator derived from the left-hand side of equation (25) after
substituting φmn(x) instead of vmn(x).
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4. Raising and lowering operators for classical OPs of a discrete variable on a
non-uniform lattice

Let y(s) be a function of a discrete variable satisfying the difference equation with respect to
the lattice function x(s)

σ (s)
�

�x (s − 1/2)

{∇y(s)

�x(s)

}
+ τ (s)

�y(s)

�x(s)
+ λy(s) = 0 (45)

where σ(s) ≡ σ [x(s)] and τ (s) ≡ τ [x(s)] are functions of x(s) of at most second and first
degrees, respectively.

It can be proven [19] that the functions vk(s) connected with the solutions y(s) by the
relations

vk(s) = �vk−1(s)

�xk−1(s)
v0(s) = y(s)

xk(s) = x
(
s + k

2

)
k = 0, 1, 2 . . .

(46)

satisfy the difference equation

σ(s)
�

�xk(s − 1/2)

{∇vk(s)

∇xk(s)

}
+ τk(s)

�vk(s)

�xk(s)
+ µkvk(s) = 0 (47)

where

τk(s) = σ(s + k) − σ(s) + τ (s + k)�x (s + k − 1/2)

�x (s + (k − 1)/2)
(48)

µk = λ +
k−1∑
m=0

�τm(s)

�xm(s)
= λ +

k−1∑
m=0

τ ′
m (49)

provided the lattice functions x(s) have the form

x(s) = c1s
2 + c2s + c3 (50)

or

x(s) = c1q
s + c2q

−s + c3 (51)

with c1, c2, c3 and q being arbitrary constants.
When µk = 0 for k = n in equation (47) vn = const. It can be proven that, when

k < n, vk(s) is a polynomial in xk(s) and in particular for k = 0, v0(s) = y(s) is a polynomial
of degree n in x(s) satisfying equation (45).

An explicit expression for λn, when µn = 0, is given by

λn = − sh nω

sh ω

{
ch(n − 1)ωτ ′ +

1

2

sh(n − 1)ω

sh ω
σ ′′

}
(52)

where ω = 1
2 ln q , or q = e2ω. For the square lattice (50) ω = 0, and for the q-lattice (51) we

have

sh nω

sh ω
= qn/2 − q−n/2

q1/2 − q−1/2
≡ [n]q .

The polynomial solutions of equation (45) satisfy the following orthogonality condition with
respect to the weight functions ρ(s), namely,

b−1∑
s=a

y�(s)yn(s)ρ(s)�x

(
s − 1

2

)
= δ�nd

2
n. (53)
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Similarly for the differences of the polynomials yn(s), namely,

vmn(s) ≡ �(m) [yn(s)] = �m−1�m−2 . . .�0 [yn(s)] �k ≡ �

�xk(s)

it holds that
b−k−1∑

s=a

vm�(s)vmn(s)ρm(s)�xm

(
s − 1

2

)
= δ�nd

2
mn (54)

where ρm(s) = ρ(s + m)
∏m

i=1 σ(s + i).
It can be proven that the normalization constants satisfy

d2
mn = d2

nn

(
n−1∏
k=m

µkn

)−1

d2
0n = d2

nn

(
n−1∏
k=0

µkn

)−1

from which d2
nn can be eliminated:

d2
mn = d2

0n

m−1∏
k=0

µkn. (55)

A particular solution of equation (45) when λ = λn is given by the Rodriguez-type
formula

yn(s) = Bn

ρ(s)
∇(n)

n [ρn(s)] = Bn

ρ(s)

∇
∇x1(s)

· · · ∇
∇xn(s)

[ρn(s)] . (56)

A solution of equation (47), when µk is restricted to λn, namely, µmn = µm(λn) =
λn − λm, 0, 1, . . . , n − 1, is given by

vmn(s) = AmnBn

ρm(s)
∇(n−m)

n [ρn(s)] = AmnBn

ρm(s)

∇
∇xm+1(s)

· · · ∇
∇xn−1(s)

∇
∇xn(s)

[ρn(s)] (57)

where

Amn = (−1)m
m−1∏
k=0

µkn = [n]!

[n − m]!

m−1∏
k=0

λn+k

[n + k]
Bn = A−1

nn �(n)yn(s). (58)

Formulae (56) and (57) can be written in terms of the mean difference operator [4]
δf (s) = f

(
s + 1

2

) − f
(
s − 1

2

) = �f
(
s − 1

2

) = ∇f
(
s + 1

2

)
, that is to say,

yn(s) = Bn

ρ(s)

[
δ

δx(s)

]n

ρn

(
s − n

2

)
(59)

vmn(s) = AmnBn

ρm(s)

[
δ

δx
(
s + m

2

)
]n−m

ρn

(
s − n

2
+

m

2

)
. (60)

In order to obtain the raising and lowering operators of the classical OPs on a non-
homogeneous lattice, we apply the Rodriguez formula (56)

yn+1(s) = Bn+1

ρ(s)
∇(n+1)

n+1 {ρn+1(s)} = Bn+1

ρ(s)

∇
∇x1(s)

· · · ∇
∇xn+1(s)

{ρn+1(s)} .

Since
∇ρn+1(s)

∇xn+1(s)
= �ρn+1(s − 1)

�xn+1(s − 1)
= � {σ(s)ρn(s)}

�xn

(
s − 1

2

) = τn(s)ρn(s)
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using equation (59) we have

yn+1(s) = Bn+1

ρ(s)
∇(n)

n {τn(s)ρn(s)} = Bn+1

ρ(s)

[
δ

δx(s)

]n {
τn

(
s − n

2

)
ρn

(
s − n

2

)}

= Bn+1

ρ(s)


τn(s)

[
δ

δx(s)

]n

ρn

(
s − n

2

)
+

sh nω

sh ω
τ ′
n

[
δ

δx
(
s − 1

2

)
]n−1

ρn

(
s − n

2
− 1

2

)
.

(61)

The last step can be proven by induction for both cases of x(s) on a non-homogeneous
lattice (50) and (51).

First of all, we transform the properties of these functions [5] given by

x(s + n) − x(s) = sh nω

sh ω
∇x

(
s +

n + 1

2

)
x(s + n) + x(s) = ch nω x(s) + const

into the difference relations

δx
(
s +

n

2

)
− δx

(
s − n

2

)
= sh nω

sh ω

{
δx

(
s +

1

2

)
− δx

(
s − 1

2

)}
(62)

1

2

{
δx

(
s +

n

2

)
+ δx

(
s − n

2

)}
= ch nω δx(s). (63)

Suppose it is true that for any two functions of a discrete variable it holds that(
δ

δx(s)

)n

{f (s)g(s)} = f
(
s +

n

2

)(
δ

δx(s)

)n

g(s)

+
sh nω

sh ω

δf
(
s + n−1

2

)
δx

(
s + n−1

2

)
(

δ

δx
(
s − 1

2

)
)n−1

g

(
s − 1

2

)
+ · · · .

Then using the properties of the mean operator we have(
δ

δx(s)

)n+1

{f (s)g(s)} = f

(
s +

n + 1

2

) (
δ

δx(s)

)n+1

g(s)

+
δf

(
s + n

2

)
δx(s)

(
δ

δx
(
s − 1

2

)
)n

g

(
s − 1

2

)

+
sh nω

sh ω

δf
(
s + n

2

)
δx

(
s + n

2

) δ

δx(s)

(
δ

δx
(
s − 1

2

)
)n−1

g

(
s − 1

2

)
+ · · · .

The second and third terms on the right-hand side can be written

δf
(
s + n

2

)
δx

(
s + n

2

)
{

δx
(
s + n

2

)
δx(s)

+
sh nω

sh ω

δx
(
s − 1

n

)
δx(s)

}(
δ

δx
(
s − 1

2

)
)n

g

(
s − 1

2

)
.

Using equations (62) and (63) the expression between curly brackets is equal to
sh(n + 1)ω/sh ω, therefore(

δ

δx(s)

)n+1

{f (s)g(s)} = f

(
s +

n + 1

2

) (
δ

δx(s)

)n+1

g(s)

+
sh(n + 1)ω

sh ω

δf
(
s + n

2

)
δx

(
s + n

2

)
(

δ

δx
(
s − 1

2

)
)n

g

(
s − 1

2

)
+ · · ·
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as required. Substituting f (x) = τn

(
s − n

2

)
and g(s) = ρn

(
s − n

2

)
, the terms of lower degree

become zero, due to the properties of function τn(s). Therefore equation (61) is proven.
Using equation (60) for m = 1 we have

∇yn(s)

∇x(s)
= �yn(s − 1)

�x(s − 1)
= v1n(s − 1) = A1nBn

ρ1(s − 1)

(
δ

δx
(
s − 1

2

)
)n−1

ρn

(
s − n

2
− 1

2

)
.

Therefore, equation (61) can be written

yn+1(s) = Bn+1

Bn

{
τn(s)yn(s) +

sh nω

sh ω

τ ′
n

A1n

σ (s)
∇yn(s)

∇x(s)

}
. (64)

Alvarez-Nodarse and Costas-Santos [6] and Alvarez-Nodarse and Arvesú [7] have given
the same formula for the lattice (51). Here we have proven a similar expression for both cases
(50) and (51).

From equation (64) we can calculate the raising and lowering operators. Instead, we
proceed to the general case in section 5, and then take the value m = 0.

5. Raising and lowering operators for generalized classical OPs of a discrete variable on
a non-uniform lattice

From equations (57) and (60) we obtain

vm,n+1(s) = Am,n+1Bn+1

ρm(s)
∇(n+1−m)

n+1 {ρn+1(s)}

= Am,n+1Bn+1

ρm(s)
∇(n−m)

n {τn(s)ρn(s)}

= Am,n+1Bn+1

ρm(s)

(
δ

δx
(
s + m

2

)
)n−m {

τn

(
s − n − m

2

)
ρn

(
s − n − m

2

)}

= Am,n+1Bn+1

ρm

(
s′ − m

2

) (
δ

δx(s′)

)n−m {
τn

(
s′ − n

2

)
ρn

(
s′ − n

2

)}
.

With respect to the new variable s′ = s + m
2 , this expression can be easily differentiated

as in equation (61) giving

vm,n+1(s) = Am,n+1Bn+1

ρm(s)

{
τn(s)

(
δ

δx
(
s + m

2

)
)n−m

ρn

(
s − n − m

2

)

+
sh(n − m)ω

sh ω
τ ′
n

(
δ

δx
(
s + m−1

2

)
)n−m−1

ρn

(
s − n

2
+

m − 1

2

)
 .

From equation (60) we obtain
∇vm,n(s)

∇x(s)
= �vm,n(s − 1)

�x(s − 1)
= vm+1,n(s − 1)

= Am+1,nBn

ρm+1(s − 1)

(
δ

δx
(
s + m−1

2

)
)n−m−1

ρn

(
s − n

2
+

m − 1

2

)

Using this result and the values for Am,n given in equation (58) we obtain the raising
operator for vmn(s), namely,

vm,n+1(s) = Bn+1

Bn

{
[n + 1]

[n + 1 − m]

λn+m

[n + m]

[n]

λn

τn(x)vmn(x) − [n + 1]

[n + 1 − m]

[n]

λn

τ ′
nσ (x)

∇vm,n(s)

∇x(s)

}
(65)
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with [n] ≡ sh nω
sh ω

corresponding to all values of lattice functions x(s) given in equations (50)
and (51).

In order to construct the lowering operator we use the recurrence relation

xm(s)vmn(s) = α̃nvm,n+1(s) + β̃nvmn(s) + γ̃nvm,n−1(s) (66)

where xm(s) = x
(
s + m

2

)
and vmn(s) ≡ �(m)yn(s).

We introduce the expansion yn(s) = anx
n(s) + bnx

n−1(s) + · · · in the recurrence relation
(66). We have two cases [20]

(a) Quadratic lattice: x(s) = s(s + 1).

�(m)xn(s) = n(n − 1) · · · (n − m + 1)xn−m
m (s)

+
1

12m
n(n − 1) · · · (n − m)(2n − 2m + 1)xn−m−1

m (s)

which after substitution in the recurrence relation (66) gives

α̃n = an

an+1

n − m + 1

n + 1
(67)

β̃n = bn

an

n − m

n
− bn+1

an+1

n − m + 1

n + 1
− 3

12m
(68)

γ̃n = an−1

an

n − m

n

d2
mn

d2
m,n−1

. (69)

(b) Exponential lattice: x(s) = Aqs + Bq−s .

�(m)xn(s) = [n][n − 1] · · · [n − m + 1]xn−m−1
m (s) + Cxn−m−3

m (s) + · · ·
which after substitution in the recurrence relation (66) gives

α̃n = an

an+1

[n − m + 1]

[n + 1]
(70)

β̃n = bn

an

[n − m]

[n]
− bn+1

an+1

[n − m + 1]

[n + 1]
(71)

γ̃n = an−1

an

[n − m]

[n]

d2
mn

d2
m,n−1

. (72)

Since an = Bn

∏n−1
k=0

(− λn+k

[n+k]

)
we obtain

α̃n = − Bn

Bn+1

λn

[n]

[2n]

λ2n

[2n + 1]

λ2n+1

[n − m + 1]

[n + 1]
(73)

which after substituting in equation (65) gives

α̃n

λ2n

[2n]
vm,n+1(s) = λn+m

[n + m]

τn(s)

τ ′
n

vmn(s) − σ(s)
∇vmn(s)

∇x(s)
. (74)

Inserting the recurrence relation (66) into equation (74) we obtain

γ̃n

λ2n

[2n]
vm,n−1(s) =

{
− λn+m

[n + m]

τn(s)

τ ′
n

+
λ2n

[2n]

}
vmn(s) + σ(s)

∇vmn(s)

∇x(s)
. (75)

The last two equations can be considered the raising and lowering operators of generalized
OPs on non-uniform lattices for the functions (50) and (51). In the first case the parameter [n]
should be taken as n.
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In order to complete the picture, we define an orthonormal function

�mn(s) = d−1
mn

√
ρm(s)vmn(s). (76)

Using the properties of the difference operator and the identity

∇ρm(s)

ρm(s)
= τm−1(s)�xm−1

(
s − 1

2

)
σ(s) + τm−1(s)�xm−1

(
s − 1

2

) (77)

we obtain

∇�mn(s) =
√

σ(s)

σ (s) + τm−1(s)�xm−1
(
s − 1

2

)d−1
mn

√
ρm(s)∇vmn(s)

+
1

√
σ(s) +

√
σ(s) + τm−1(s)�xm−1

(
s − 1

2

)
× τm−1(s)�xm−1

(
s − 1

2

)
√

σ(s) + τm−1(s)�xm−1
(
s − 1

2

)�mn(s). (78)

Multiplying both sides of equation (74) by d−1
mn

√
ρm(s) and substituting the value

d−1
mn

√
ρm(s) ∇vmn(s) obtained in equation (78) we obtain

α̃n

λ2n

2n

dm,n+1

dmn

�m,n+1(s) = L+(s, n)�mn(s)

=

 λn+m

[n + m]

τn(s)

τ ′
n(s)

+

√
σ(s)τm−1(s)

√
σ(s) +

√
σ(s) + τm−1(s)�xm

(
s − 1

2

) ∇xm

(
s + 1

2

)
∇x(s)




× �mn(s) −
√

σ(s)σ (s) + τm−1(s)�xm−1

(
s − 1

2

)∇�mn(s)

∇x(s)
. (79)

Similarly

γ̃n

λ2n

2n

dm,n−1

dmn

�m,n−1(s) = L−(s, n)�mn(s)

=

− λn+m

[n + m]

τn(s)

τ ′
n

+
λ2n

2n
(s − β̃n) −

√
σ(s)τm−1(s)√

σ(s) + τm−1(s)�xm

(
s − 1

2

)
× ∇xm

(
s + 1

2

)
∇x(s)

}
�mn(s) +

√
σ(s)σ (s) + τm−1(s)�xm−1

(
s − 1

2

)∇�mn(s)

∇x(s)
.

(80)

The last two expressions can be considered the raising and lowering operators for the
generalized orthonormal functions on non-homogeneous lattices of the type (50) and (51). It
can be proven that these operators are mutually adjoint with respect to the scalar product of
unit weight.

As in the previous sections we can factorize the raising and lowering operators as follows:

L−(s, n + 1)L+(s, n) = µ(n) + u(s + 1, n)H(s, n)

L+(s, n)L−(s, n + 1) = µ(n) + u(s, n − 1)H(s, n + 1)



Raising and lowering operators and their factorization 197

where

µ(n) = λ2n

[2n]

λ2n+2

[2n + 2]
α̃nγ̃n+1 u(s, n) = λn

[n]

τn(s)

τ ′
n

− σ(s)

∇x(s)

and H(s, n) is the difference operator derived from the left-hand side of equation (47) after
substituting �mn(s) instead of vmn(s) given in equation (76). Notice that the expressions for
the factorization of the raising and lowering operators become the same expressions (32) and
(33) given in [6].

6. Conclusions

We have developed the construction of raising and lowering operators for classical OPs of
a discrete variable on a non-homogeneous lattice, extended also to the generalized OPs on
homogeneous and non-homogeneous lattices.

In the last case (generalized OPs) the raising and lowering operators can be defined with
respect to the index n, the order of the OP, or with respect to the index m, the order of the
difference derivative of the generalized OP, or both [25].

In this paper, we have taken into account only the index n, although we have suggested
how to complement the calculus with the index m. We have also introduced the orthornomal
functions of unit weight, more suitable to quantum mechanical applications.

Our presentation leads to an easier method for the continuous limit (compare with a
different presentation in [1]).

We have already worked out some physical applications of raising and lowering operators
on homogeneous and non-homogeneous lattices. For instance, the quantum mechanical
models for the harmonic oscillator in one dimension (Kravchuk OP), the hydrogen atom
(generalized Meixner OP) [21], the Heisenberg equation of motion on the lattice (Hahn OP)
[22] and the Dirac and Klein–Gordon equations on a homogeneous lattice (discrete exponential
function) [23, 24].

Finally, studies of the connection between OPs on a non-homogeneous lattice and the
3nj-Wigner coefficients and its application to spin network models in quantum gravity are now
in progress.
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[7] Alvarez-Nodarse R and Arvesú J 1999 On the q-polynomials in the exponential lattice Integral Transforms and
Special Functions 8 299–324

[8] Smirnov Y F 1998 Finite difference equation and factorization method Proc. V Wigner Symposium
ed P Kasperkovitz and D Grano (Singapore: World Scientific) p 148

[9] Smirnov Y F 1999 Factorization method: new aspects Rev. Mex. Fis. 45 1–6
[10] Rahman Mizan 2001 The associated classical orthogonal polynomials Special Functions 2000 ed J Bustoz et al

(Dordrecht: Kluwer)
[11] Nikiforov A F, Suslov S K and Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable

(Berlin: Springer) p 8
[12] Nikiforov A F, Suslov S K and Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable

(Berlin: Springer) p 11
[13] Nikiforov A F, Suslov S K and Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable

(Berlin: Springer) p 6
[14] Nikiforov A F, Suslov S K and Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable

(Berlin: Springer) p 19
[15] Nikiforov A F, Suslov S K and Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable

(Berlin: Springer) p 20
[16] Nikiforov A F, Suslov S K and Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable

(Berlin: Springer) p 24
[17] Nikiforov A F, Suslov S K and Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable

(Berlin: Springer) p 26
[18] Nikiforov A F, Suslov S K and Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable

(Berlin: Springer) pp 42–6
[19] Nikiforov A F, Suslov S K and Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable

(Berlin: Springer) p 55
[20] Nikiforov A F, Suslov S K and Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable

(Berlin: Springer) pp 101–4
[21] Lorente M 2001 Continuous vs discrete models for the quantum harmonic oscillator and the hydrogen atom

Phys. Lett. A 285 119–26
[22] Lorente M 1989 On some integrable one-dimensional quantum mechanical systems Phys. Lett. B 223 345–50
[23] Lorente M 1993 A new scheme for the Klein–Gordon and Dirac field on the lattice with axial anomaly J. Group

Theory Phys. 1 105–21
[24] Lorente M and Kramer P 1999 Representations of the discrete inhomogeneous Lorentz group and Dirac wave

equation on the lattice J. Phys. A: Math. Gen. 32 2481–97
[25] Smirnov Y F 1997 On factorization and algebraization of difference equation of hypergeometric type Proc. Int.

Workshop on Orthogonal Polynomial in Math. Physics ed M Alfaro et al Universidad Carlos III, Leganés
(Madrid) p 153


